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The problem of calculating stress intensity factors for a solid with a surface crack is considered in a
plane configuration. The cross-section of the solid, containing the crack, is mapped onto a domain in
which the complex potentials are holomorphic everywhere, including the crack tip. It is shown that
their determination reduces to solving a Muskhelishvili-type boundary integral equation. An algorithm
for calculating the solution of this equation is given, together with the solutions of a range of problems
for finite and infinite domains.

In [1-3] this problem was reduced to the solution of a singular integral equation of the first
kind for the derivative of the displacement jump along the line of the crack. Below we present
an alternative method which reduces the problem to a boundary integral equation, similar in
structure to the well-known Muskhelishvili equation [4].

1. We consider a simply-connected (finite or infinite) domain D which is the transverse
section of a body with a surface crack. The domain D is bounded by a piecewise-smooth
contour T, part of which is the contour of the crack, and which is in general curvilinear (Fig. 1).

Since the stress state in the immediate vicinity of the contour corners other than the crack tip
(the points A, A" and B in Fig. 1) is of no particular interest in this case, one can smooth the
contour in the neighbourhoods of these points, for example by joining the smooth segments of
the contour with circles of small radius r. Thus, without loss of generality, one can take the
domain D to be bounded by a contour T that is smooth everywhere except at the crack tip.

We place the origin of coordinates at the crack tip and direct the abscissa along the tangent
to the line of the crack in the direction in which it increases. The stress state in the domain D is
governed [4] by two functions of a complex variable (a complex potential) ¢({) and y(§),
where {=x+1iy, satisfying the equation

— s(7)
(D + 79’ (D +y(D) = f(7) (f(t)=i ‘J’ (P +ip,)ds) (1.1)

on the contour I, where 7 is the complex coordinate of the point on the contour, s is the arc
length along the contour, and p, and p, are components of the surface load vector.

If there is no crack, then the functions ¢ and y are analytic in the domain D, including its
boundary [4], and in this case they can be found by solving, for example, the Muskhelishvili
boundary integral equation [4]. In the presence of a crack its tip is a recurrence point, so that
the Muskhelishvili equation is inapplicable [4]. The functions ¢({), y({) are non-analytic at the
crack tip. They can be represented in the following form [5]
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Fig. 1.

@) =C0+0, Q). W= +w () (12)

where ¢,0), ¢,0), v, (0, v,({) are analytic functions in the domain D, including the
boundary contour.

We try to obtain an integral equation, similar to the Muskhelishvili equation, determining
the functions ¢ and y. Let { =w(z) be a conformal map of the domain D onto the domain E
such that the complex potentials ¢ and y are analytic in the domain D, including its boundary
contour L. Here Eq. (1.1) transforms as [4]

o +[0()/ @ D19’ ) +y(1) = F () 13)

where ¢ is the complex coordinate of a point on the contour of E.
We look for the potentials ¢ and y in the form of products of functions analytic in the
domain E (including the boundary contour)

®(2)=Q(2) ¥z), Y(2)=2(2)x(z) (1.4)

where Q(z) is a specified function (whose form is given below), and 9 and x are new unknown
variables. Instead of (1.3) we obtain the following relation

R, D80+ K@D 0@+ K(1,1) ¥ @)+ x () = Fy(t,f) (1.5)

Re.H=0@1/Q¢), K=o/ o)
E(t,D)=FReHQ O/, Ft.h)=F)/ Q@)

The subsequent reasoning is identical with the corresponding reasoning of Muskhelishvili.
Suppose z¢ E. Then, expressing x(t) using (1.5), we obtain

X@=5m | BB = | (RED-AEDH - (16)

-REDIO-HED YOI =0
Suppose now that z—1, remaining all the time inside the domain E. Using the Sokhotskii-
Plemel formulae and the relations
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valid by virtue of the analyticity of the function ¥, after integration by parts we obtain a
singular integral equation of the second kind for the function 9

— B(E)dE 1, E)d
I'}(t,?){ﬁ(t)«j%{ 9%—}%5}15‘3(:,:)5—“—;{ —-gz_z_-;i
1 FGDIERE 1 BEDS &
Tamig E-t 2mi y E—t
1 ED-KREE _ReH 1 KEEDE
" MO 2 ) bt 18

Expressing the stress intensity factors K; and Kj; in terms of the complex potential ¢({) [6]
and using relation (1.4), we obtain

¥
Ky - Ky = 2427 lim [(50'(0)] = 2V37 lim {M Q) ﬁ(z)]’} (19)
{0 =79 | ®(2)

where z, is the coordinate of the crack tip.

2. We will show that the solution of Eq. (1.8) holds not only for points z¢E, but also for
points ze E. We consider the function

®(z,7) = F(2,7) ¥ (2)+%(z), z€E (21)

Using the Cauchy formulae and relation (1.5) we obtain

0n=FeD o HER oL (REH-FEHIE)- 22)

-KEE)8E)- KED) ﬂ'(&)}f;%

We make z tend to the point t of the contour (here zeE). Using the continuity of the
function @ and the Sokhotskii-Plemel formulae we arrive at an expression for ®(¢, 7), and
after substituting it into (1.5) we again obtain Eq. (1.8). Thus solutions of the equations
obtained are analytically continuable in the domain E.

3. We will investigate the solvability of Eq. (1.8). Suppose first that Q(z) = 1. Here, just as for
the Muskhelishvili equation, Eq. (1.8) has non-trivial solutions for a zero right-hand side
(eigenfunctions), or in other words, it is not in general solvable. However, if the loads applied
to the body satisfy the static equations, then Eq. (1.8) by virtue of the existence theorem for
solutions of problems in the theory of elasticity, has a solution, because it is identical to
differential equation (1.5). The eigenfunctions of Eq. (1.8) are the result of translational
displacements of the solid as a whole

Po=-Vo=¢p (ENY)
and of rigid rotations
@ =icl, ;=0 (32)

where ¢, and ¢, are arbitrary real and complex constants, respectively [7]. By the uniqueness
theorem for solutions of problems in the theory of elasticity there are no other solutions 7).
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The presence of eigenfunctions leads to the non-uniqueness of the solution of Eq. (1.8) when
Q(z)=1. And although the eigenfunctions (3.1) and (3.2) do not affect the values of the stress
intensity factors (1.9), the non-uniqueness of the solution can hinder or even make impossible
the process of solving Eq. (1.8). It is with the aim of ensuring solution uniqueness that the
function Q(z)is introduced into expressions (1.4). As well as being analytic this function must
satisfy yet another requirement: it must vanish at every point of the domain E and of its
boundary contour. Then if Eqs (3.1) hold, the eigenfunctions 9, and yx, are given by the
expressions

Bo(2)=co /Q2) Xo(2)=-cp / AU2) (33)
Since ¥ and yx are sought in the class of functions analytic in E, including the boundary
contour, the solution (3.3) cannot be used. The introduction of the function Q(z) thus enables
one to exclude the eigenfunctions (3.1).
To eliminate the eigenfunctions (3.2) we will use a procedure similar to one employed by
Sherman when transforming the Laurichella-Sherman equation [7]. We add the expression
blex(s) / &'(1)+F1/ Q(r) (34

where b is a pure imaginary constant, to the left-hand side of Eq. (1.5); we multiply both sides
of the equation by w’(¢)Q2(¢) and integrate over L. Using integration by parts, we obtain

2i Im[ [ QO B@) ') dt]+ 2ib Im[ | @(® dt] = [ fln) o'(t) dt (3.5)
L L L

If the moment of external forces vanishes, then [7]
Re [ () o'(t)dt=0 (3.6)
L

and consequently b=0. Thus, when the static equations (3.6) are satisfied, Eq. (1.5) and the
equation modified as above are equivalent. Transforming the modified equation in the same
way as Eq. (1.5), we arrive at Eq. (1.8) except that its left-hand side has the additional term

o _1 By+f]—95 37

We define the constant b as follows:

T 1 a®)eE)de
""I"{zm'{ m(t)(&—z.)] 38)

where z is some internal point of the domain E. Then, if 9, is an eigenfunction obtained from
expression (3.2)

1’1 (Z) = icl“)(Z) / Q(Z) (3.9)
it then follows from (3.8) that
b=ic =0 (3.10)

Equation (1.8) with the added term (3.7) has no non-trivial solutions when the right-hand
side is zero, because here, as a consequence of (3.5), we obtain b=0.
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4, We will determine from the above requirements the specific form of the functions w(z)
and Q(z). We first consider the case when the domain D is finite. From formulae (1.2) it is
clear that the complex potentials ¢ and y are analytic functions of the argument C% . Hence it is
natural to take

o(z) =22, Qz)=z 4.1)

The choice of the function Q in this form is equivalent to the requirement that the displace-
ment vanishes at the crack tip. Formula (1.9) then takes the form

K, -iKy =27 9(0) (4.2)

In order to find the coordinates of points on the contour L we write
v=Re®, t=vT=VRe"®? 43)

For points on the contour T, starting at the point C (the intersection of the abscissa with the
contour) and going up to the point A, and also for the upper side of the crack (the section
AQ), we take 0>0, and on the remaining parts of the contour (OA'C") 0<0. As a result of the
mapping (4.1) the crack tip (the point O) lies on the smooth part of the contour L.

We will consider the case when the domain D contains the point at infinity. A conformal
mapping w(z) is constructed in such a way that the domain E is finite. Such a mapping can be
obtained by joining the mapping (4.1) with a mapping taking the half-plane x>0 inside the
unit circle

o(z)=al(z+1)/ (z- DI (4.4)

where a is a real constant

Figure 2 shows an example of a mapping (4.4): a half-plane with an oblique crack (the
domain D) is mapped onto the finite domain E in which the crack tip lies on a smooth part of
the boundary contour. The parameter a is taken to be the length of the crack. The sides of the
crack turn into a semicircle of unit radius; the point at infinity is mapped into the point z=1.
In order to find the coordinates ¢ of points on the contour we need the inverse mapping

t=[(R ¢**-Va)/ (JR e**+a)}; 1=Re" 4.5)

For points on the contour BAQO (naturally, both BA and AO can in general be curvilinear), we
take 0> 0, and for the remaining parts of the contour 6<0.

P=7 A(0,1)

\ 8(40)

10 | e

A7, -1)
Fig. 2.
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The choice of the function Q is governed by the following conditions: one must have
¢ =y =0 at the point of infinity. Hence it is natural to put

Q=z-1 (46)
Expression (1.9) takes the form
K; - iKy = 242r/ a [8(=1)-20"(-1)] (4.7)

With the chosen expressions (4.4) and (4.6) for the functions w(z) and Q(z) the eigen-
function caused by a rigid rotation (3.9) is non-analytic at the point z=1, i.e. it is outside
the class of functions in which we look for 9(z). Hence when solving problems for infinite
domains it is not necessary to add the term (3.4) to the left-hand side of Eq. (1.8).

5. It is natural to solve Eq. (1.8) by the boundary-clement method [8]. We obtain the solution
using the simplest elements, inside which the values of the function ¥ are taken to be constant.
Suppose the boundary contour is decomposed into n elements. Inside each jth element we
choose a collocation point ¢,. Equations (1.8) and (3.8) are transformed into a system of linear
complex algebraic equations for the values of the function ¥ in the elements and the constant b
(below, summation over k is taken from k=1 to k=n and integration is over the contour L,)

B;+ T (A0, +By9,)+bC;=F; j=1,..,n

(5.1)
b = i Im z Gkﬂk
Separating real and imaginary parts, we obtain a system of 2n+1 linear equations
oF +3 [(Af +Bf) Of +(A} - Bj) 9}1-'C] = F
~0] +X [(A} + Bj) Of + (B - A3) 031+ b'C' = F] (5.2)

b' =3 (GOF +Gfo})

The superscripts R and I denote the real and imaginary parts of complex quantities. The
coefficients of the system are given by the formulae

1

pely L L AGD 3

E-i, R(pi) mi’  E-y

C_BG) 1 € 1 [ 1 REDE,
*URGE) 2w E-t; KR |28 E-t;
_ 1 [Red) 1 o REBE
F}‘p;(:j,ij)[ 2 2m‘ZI E-1; (55)
N S 1 (V77T R BT | QL
Ci‘p;(r,.,i,){ 200,) o 2 J RGE+E] a®E-1) (5.6)
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LIE - OLIGL

Tomit o(B)(E-z) (5.7

k

When j=k the integrals in these formulae are singular, but by choosing functions ® and Q
in the form (4.1), (4.4) and (4.6) the conditions for the existence of principal values for these
integrals are satisfied. The integration can, for example, be performed numerically [8]; when
performing the calculations whose results are given below, all the above integrals with the
exception of the first one in (5.3) and the second and third in (5.4), which were found exactly,
were approximated by the formulae

_1 &(@®dE
I =51 kg_ i (58)

The linear law

8 (€)=a,E+b, (59)

is used to model the variation of the function g, inside each element.

The coefficients a, and b, are governed by specifying values of g, at the boundaries of the
element.

Substituting (5.9) into (5.8) we obtain

Iy =lap(Eqp = Gip) +(apt + b)) 1

l= ln{(éZk-tj)/(élk-rj)L j#k
[y — 1)/ G ~ 1)1+ i, j=k

where &,,, &, are coordinates of the initial and end points of the element.
The increment of the argument

A9=92 —01; riexp(iel)=§|j—tj. rzexp(i92)=§2j —t!

is chosen to be negative. The quantity ¥(z,), where z, is the coordinate of the crack tip, is
calculated from the formula

B(zp)=(D, +0_)/2

where ¥, and ©_ are the values of the function ¥ at elements adjacent to the crack tip on
opposite sides. Such a formula is also used to find 9'(z) and the quantities ¥, and ®’ are
calculated using the second relation in (1.10).

Let

A1=ﬂl""ﬂn; Aj=ﬁj_ﬁj—l’ j=2,...,n

where j is the number of the element. The piecewise-constant function 9(f) can be represented
as

(1) =90,+3 AH(t-&,)

where H is a step function equal to zero if + belongs to the segment of the contour with a
number less than k, and unity otherwise. It follows from the second formula in (1.7) that
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¥ =(mi)" T A/ G -0 (5.10)
~ We obtain 9] and 9’ by setting the quantity ¢ in formula (5.10) equal to the coordinates of
the collocation points in the elements adjacent to the crack tip.

6. We will consider some examples illustrating the application of the above method. Suppose that the
half-plane shown in g 2 extends to infinity with a uniformly distributed load of intensity ¢ directed
parallel to the boundary of the half-plane. We shall find the dependence on the angle o of the dimension-
less quantities

F =K /[o(ra)?], Fy =Ky /[o(ra)?] (6.1)

where a is the length of the crack. We will first deal with the case & =0. An analytic solution obtained by
Koiter [9] gives the value 1.1215 for K (F, =0 because of symmetry). Zang and Gudmundson obtained
F, =1.121579 [2].

“1

AedbdST L &

We will mvesngate the convergence of the numerical solution to the result obtained with increasing
numbers of boundary elements. The segments BA, AO, OA’ and A’C of the contour L were decomposed
into equal numbers m of elements. The elements within the limits of each segment all had the same
length. The collocation points were chosen to be the centres of the elements. The results of the calcu-
lations were

m 1 2 3 6 12 24

F 0.720 1.116 1,131 1,12289 1.12203 1.12158

We will now consider the same problem for different angles o.. The principle behind decomposing the
contour L into boundary elements was the same. Below we give results of the calculation for m=12 (F1).
For comparison we also give the results of Hasebe and Inohara (F2) which are taken from [10]

o 0° i5° 30° 45° 60° 75°
FY 1122 1,068 0916 0.698 0453 0221
2 1121 1.069 0920 0.705 0.461 0.239
Fly 0 0.178 0313 0373 0343 0.228
F2y 0 0.174 0.3 0.364 0338 0219

1,
1

£ 4

We will now consider examples of applications of the method to finite domains. Figure 3 shows a strip
with a linear oblique crack of length a, stretched by a uniformly distributed load ©. The contour I" consists
of eight linear segments (the unloaded side of the strip, where there is no crack, being considered, for
convenience, to be two segmentis). Each of these is uniformly decomposed into m boundary eiements.
The collocation points were chosen to be the centres of the elements. We will consider first of all the case

=0 Here bugsvmmetrv. F =0 1et W/H =2 The results of an analvgis of the convergence of values of

=0. Here, by symmetry, F;=0.Le =2. The results of an analysis of the convergence of values o
F, to the value found for different values of m are shown together with the results of Bowie [11] and Zang
[3] in Table 1.

Table 1
a m {11} 3}
w 1 2 6 12
0.1 1.517 1.325 1.243 1.233 1.23 1,228
03 1.749 1,831 1.855 1.854 1.85 1.843
0.5 2228 2.710 2989 3.022 301 2,004
n~ 2 909 A4 140 6334 640 6.338

oD T

Sacv

ST v

Vo
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The results of calculations of F, for the same problem with W/H =1, when m=6 and m =12, together
with results from [12, 13], obtained for an infinite strip, are given below

aw 0.1
Fim=6) 1.201
Fiim=12) 1.192
Ri12) -
Fi[13] 1,189

0.3

1.651
1.658
1.655
1.660

05

2.750
2.811
2.827
2,825

07
5.646
6,194
6.376
6.36

The results of calculations of F(o) and Fy(a) when W/H=1 and a/W =03 (taking m=46) are almost

identical with the results in [11].

Note that the test problem solutions obtained show that the accuracy of the method is acceptable.
In conclusion we consider the problem of a curvilinear crack in a stretched strip (Fig. 4). Suppose that
the line of the crack is part of a circle of radius R. The length of the crack is a = Ro.. The decomposition of

the contour L into elements is the same as in the preceding problem with a linear crack in a strip. Below
we give the results of calculations for R/W =03 (m=6).

o 15° 30°
F 1,146 1,116
Fy 0an 0337

45°
1.044
0484

60° 75°
0.905 0.708
0.584 0.615

900
0481
0.570
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