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The problem of calculating stress intensity factors for a solid with a surface crack is considered in a 

plane configuration. The cress-section of the solid, containing the crack, is mapped onto a domain in 

which the complex potentials are holomorphic everywhere, including the crack tip. It is shown that 

their determination reduces to solving a Muskhelishvili-type boundary integral equation. An algorithm 

for calculating the solution of this equation is given, together with the solutions of a range of problems 

for finite and infinite domains. 

In [l-3] this problem was reduced to the solution of a singular integral equation of the first 
kind for the derivative of the displacement jump along the line of the crack. Below we present 
an alternative method which reduces the problem to a boundary integral equation, similar in 
structure to the well-known Muskhelishvili equation [4]. 

1. We consider a simply-connected (finite or infinite) domain D which is the transverse 
section of a body with a surface crack. The domain D is bounded by a piecewise-smooth 
contour I, part of which is the contour of the crack, and which is in general curvilinear (Fig. 1). 

Since the stress state in the immediate vicinity of the contour corners other than the crack tip 
(the points A, A' and B in Fig. 1) is of no particular interest in this case, one can smooth the 
contour in the neighbourhoods of these points, for example by joining the smooth segments of 
the contour with circles of small radius r. Thus, without loss of generality, one can take the 
domain D to be bounded by a contour I that is smooth everywhere except at the crack tip. 

We place the origin of coordinates at the crack tip and direct the abscissa along the tangent 
to the line of the crack in the direction in which it increases. The stress state in the domain D is 
governed [4] by two functions of a complex variable (a complex potential) cp(c) and w(c), 
where [ = _X + iy, satisfying the equation 

cpo+W2)+ Wz) = f(z) ( f(z) = i”i”(p, +ipy) ds 
0 1 (1.1) 

on the contour I, where z is the complex coordinate of the point on the contour, s is the arc 
length along the contour, and p, and p,, are components of the surface load vector. 

If there is no crack, then the functions cp and w are analytic in the domain D, including its 
boundary [4], and in this case they can be found by solving, for example, the Muskhelishvili 
boundary integral equation [4]. In the presence of a crack its tip is a recurrence point, so that 
the Muskhelishvili equation is inapplicable [4]. The functions g(c), w(c) are non-analytic at the 
crack tip. They can be represented in the following form [5] 
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Fig. 1. 

~t~)=~~~t~)+~,t~), ~t~)=~~~t~)+~t(~) (1.2) 

where qr,(c), cp,(& w&J, ~~(0 are analytic functions in the domain D, including the 
boundary contour. 

We try to obtain an integral equation, similar to the Musbhelishvili equation, determining 
the functions cp and w. Let 5 = o(z) be a conformal map of the domain D onto the domain E 
such that the complex potentials (B and w are analytic in the domain D , including its boundary 
contour L . Here E?q. (1.1) transforms as [4] 

where t is the complex coordinate of a point on the contour of E. 
We look for the potentials cp and w in the form of products of functions analytic in the 

domain E (including the boundary contour) 

p(z) = Q(z) 6(z), v(z) = 51(z) Ix(z) (1.4) 

where n(z) is a specified function (whose form is given below), and 6 and x are new unknown 
variables. instead of (1.3) we obtain the following relation 

~(?*~)6(t)+l;j(t,T)6~t)+F,(t,i)6’(t)+~(t)=F,(t,T) (1.5) 

F,(&i)=~)lQ(t), F,(t,i)=ofr)/o’(t) 

4(t,+ F,(f,i)R’(f)ln(f,, F,(f,T)=f(t)/i2(f) 

The subsequent reasoning is identical with the corresponding reasoning of M~khelishvili. 
Suppose z 6 E. Then, expressing x(r) using (1.5), we obtain 

Suppose now that z + t, remaining all the time inside the domain E. Using the Sokhotskii- 
Plemel formulae and the relations 

(1.7) 
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valid by virtue of the analyticity of the function 13, after integration by parts we obtain a 
singular integral equation of the second kind for the function fi 

Expressing the stress intensity factors K, and K, in terms of the complex potential cp(c) [6] 
and using relation (1.4), we obtain 

where z, is the coordinate of the crack tip. 

2 We will show that the solution of Eq. (1.8) holds not only for points z @ E, but also for 
points z E E. We consider the function 

Wz,Z) = J$(z, 3 6’(z) + x(z), z c E (2.1) 

Using the Cauchy formulae and relation (1.5) we obtain 

(2.2) 

We make z tend to the point t of the contour (here z E E). Using the continuity of the 
function Cp and the Sokhotskii-Plemel formulae we arrive at an expression for @(t, f), and 
after substituting it into (1.5) we again obtain Eq. (1.8). Thus solutions of the equations 
obtained are analytically cont~uable in the domain E. 

3. We will ~vestigate the solvability of Eq. (1.8). Suppose first that fyz) = 1. Here, just as for 
the Muskhelishvili equation, Eq. (1.8) has non-trivial solutions for a zero right-hand side 
(eigenfunctions), or in other words, it is not in general solvable. However, if the loads applied 
to the body satisfy the static equations, then Eq. (1.8) by virtue of the existence theorem for 
solutions of problems in the theory of elasticity, has a solution, because it is identical to 
differential equation (1.5). The ei&enfunctions of Eq. (1.8) are the result of translational 
displacements of the solid as a whole 

‘PO Lip* ‘0 (3.1) 

and of rigid rotations 

cpl = iqr, v, = 0 (3”2) 

where c, and c, are arbitra~ real and complex constants, respectively 17). By the uniqueness 
theorem for solutions of problems in the theory of elasticity there are no other solutions [7& 
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The presence of eigenfunctions leads to the non-uniqueness of the solution of Eq. (1.8) when 
Q(z)= 1. And although the eigenfunctions (3.1) and (3.2) do not affect the values of the stress 
intensity factors (1.9), the non-uniqueness of the solution can hinder or even make impossible 
the process of solving Eq. (1.8). It is with the aim of ensuring solution uniqueness that the 
function Q(z)is introduced into expressions (1.4). As well as being analytic this function must 
satisfy yet another requirement: it must vanish at every point of the domain E and of its 
boundary contour. Then if Eqs (3.1) hold, the eigenfunctions 6, and x0 are given by the 
expressions 

l3,(z)=cglR(z), x0(z)=-qdR(z) (3.3) 

Since 6 and x are sought in the class of functions analytic in E, including the boundary 
contour, the solution (3.3) cannot be used. The introduction of the function Q(z) thus enables 
one to exclude the eigenfunctions (3.1). 

To eliminate the eigenfunctions (3.2) we will use a procedure similar to one employed by 
Sherman when transforming the Laurichella-Sherman equation [7]. We add the expression 

(3.4) 

where b is a pure imaginary constant, to the left-hand side of Eq. (1.5); we multiply both sides 
of the equation by ~‘(t)r(Z(t) and integrate over L. Using integration by parts, we obtain 

2ihl 
[ 
j n(t) W)a’(t)dt +2ibIm j O(t)& = j foO’(t)df 
L -- 1 LL IL 

(3.5) 

If the moment of external forces vanishes, then [7] 

Re j f(t) d(t) df = 0 (3.6) 
L 

and consequently b = 0. Thus, when the static equations (3.6) are satisfied, Eq. (1.5) and the 
equation modified as above are equivalent. Transforming the modified equation in the same 
way as Eq. (1.5), we arrive at Eq. (1.8) except that its left&and side has the additional term 

We define the constant b as follows: 

b=iI J_ , n(S) Wk) d5 

hi L co(S)G-&I I 

(3.7) 

(3.8) 

where z is some internal point of the domain E. Then, if 6, is an eigenfunction obtained from 
expression (3.2) 

6, (z) = k&z) 1 Q(z) (3.9) 

it then follows from (3.8) that 

b = ic, = 0 (3.10) 

Equation (1.8) with the added term (3.7) has no non-trivial solutions when the right-hand 
side is zero, because here, as a consequence of (3.5), we obtain b = 0. 
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A We will determine from the above requirements the specific form of the functions o(z) 
and &2(z). We first consider the case when the domain D is finite. From formulae (1.2) it is 
clear that the complex potentials cp and w are analytic functions of the argument @. Hence it is 
natural to take 

o(z) = z2. n(z) = z (4.1) 

The choice of the function iz in this form is equivalent to the requirement that the displace- 
ment vanishes at the crack tip. Formula (1.9) then takes the form 

K, - iK, = & e(O) P-2) 

In order to find the coordinates of points on the contour L we write 

For points on the contour r, starting at the point C (the intersection of the abscissa with the 
contour) and going up to the point A, and also for the upper side of the crack (the section 
AU), we take 8 > 0, and on the remaining parts of the contour (OA’C? 8 c 0. As a result of the 
mapping (4.1) the crack tip (the point 0) lies on the smooth part of the contour L. 

We will consider the case when the domain D contains the point at infinity. A conformal 
mapping o(z) is constructed in such a way that the domain E is finite. Such a mapping can be 
obtained by joining the mapping (4.1) with a mapping taking the half-plane x > 0 inside the 
unit circle 

U(z) = UN2 + 1) 1 (z - 1)12 (4.4) 

where a is a real constant 
Figure 2 shows an example of a mapping (4.4): a half-plane with an oblique crack (the 

domain D) is mapped onto the finite domain 6 in which the crack tip lies on a smooth part of 
the boundary contour. The parameter a is taken to be the length of the crack. The sides of the 
crack turn into a semicircle of unit radius; the point at infinity is mapped into the point z = 1. 
In order to find the coordinates t of points on the contour we need the inverse mapping 

r=[(fieie’2-&)/(.@eie’2+J;;)1; t= Re” (4.5) 

For points on the contour BAO (naturally, both BA and A0 can in general be curvilinear), we 
take 8 > 0, and for the remaining parts of the contour 8 c 0. 

AYO. -II 

Fig. 2. 
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The choice of the function Q is governed by the following conditions: one must have 
(p = w = 0 at the point of infinity. Hence it is natural to put 

R=z-1 (4.6) 

Expression (1.9) takes the form 

KI - iK, = 245& [6(-l)- 22”)‘(-1)] (4.7) 

With the chosen expressions (4.4) and (4.6) for the funtitions o(z) and Q(z) the eigen- 
function caused by a rigid rotation (3.9) is non-analytic at the point z= 1, i.e. it is outside 
the class of functions in which we look for 6(z). Hence when solving problems for infinite 
domains it is not necessary to add the term (3.4) to the left-hand side of Eq. (1.8). 

5. It is natural to solve Eq. (1.8) by the boundary-element method [8]. We obtain the solution 
using the simplest elements, inside which the values of the function 6 are taken to be constant. 
Suppose the boundary contour is decomposed into II elements. Inside each jth element we 
choose a collocation point fj. Equations (1.8) and (3.8) are transformed into a system of linear 
complex algebraic equations for the values of the function Q in the elements and the constant b 
(below, summation over k is taken from k = 1 to k = n and integration is over the contour &) 

Bj+Z(Aj~5,+Bj~19,)+bC~=Fj; j=l,...,n 

b=iImC G#, 
(5.1) 

Separating real and imaginary parts, we obtain a system of 2n + 1 linear equations 

s:+I:[(A~+B~)6,R+(A~-B~~)~:l-b1C,!=FjK 

-s~+~[(Aj,+B~)6,R+(B~-A~)6:]+brCiR=Fjl 

6’ = x (G# + G:I!+~):) 

(5.2) 

The superscripts R and I denote the real and imaginary parts of complex quantities. The 
coefficients of the system are given by the formulae 

B. ze e(tjrt;.) 1 -_@L l 
It F;(fj,~j) 2Zi 5-tj F;(tj*ij) 

+&Jd 

F,(~j*';)-F,(Sst) tMrj II 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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Gk (5.7) 

When j = k the integrals in these formulae are singular, but by choosing functions w and Sz 
in the form (4.11, (4.4) and (4.6) the conditions for the existence of principal values for these 
integrals are satisfied. The integration can, for example, be performed numerically [S]; when 
performing the calculations whose results are given below, all the above integrals with the 
exception of the first one in (5.3) and the second and third in (5.4), which were found exactly, 
were approximated by the formulae 

Ijk = $ J 
gk (5) d5 
CBtj 

(5.8) 

The linear law 

is used to model the variation of the function g, inside each element. 
The coefficients a, and bk are governed by specifying values of g, at the boundaries of the 

element. 
Substituting (5.9) into (5.8) we obtain 

I jk =[ak(&k -6lk)+(aktj +bk)Il 

in[(42k_tj)/(5,*-fj)]+xi, j=k 

where klk, E,2k are coordinates of the initial and end points of the element. 
The increment of the argument 

de = 0, - 01; 4 exp(ie, ) = 51 j - tj, r2 exp(ie, ) = 52 j - tj 

is chosen to be negative. The quantity 19(zJ, where b is the coordinate of the crack tip, is 
calculated from the formula 

where 29, and 29_ are the values of the function 6 at elements adjacent to the crack tip on 
opposite sides. Such a formula is also used to find 6’(zJ and the quantities S: and 3: are 
calculated using the second relation in (1.10). 

Let 

Ar=f$-6,,; A/=6j-~j_,, j=2,...,n 

where j is the number of the element. The piecewise-constant function S(f) can be represented 
as 

where N is a step function equal to zero if t belongs to the segment of the contour with a 
number less than k, and unity otherwise. It follows from the second formula in (1.7) that 



168 I. M. Lavit 

W(t) = (I& C A, ! (& - 0 (5.10) 

We obtain I?: and 91 by setting the quantity t in formula (5.10) equal to the coordinates of 
the collocation points in the elements adjacent to the crack tip. 

6. We will consider some examples illustrating the application of the above method. Suppose that the 
half-plane shown in Fig. 2 extends to infiiity with a uniformly distributed load of intensity CT directed 

parallel to the boundary of the half-plane. We shall find the dependence on the angle a of the dimension- 
less quantities 

4 =KIl[dlca)Hl, Fn = Knl[00r4Hl (6.1) 

where a is the length of the crack. We will first deal with the case a = 0. An analytic solution obtained by 

Koiter [9] gives the value 1.1215 for 4 (F,, =0 because of symmetry). Zang and Gudmundson obtained 

4 = 1.121579 [2]. 
We will investigate the convergence of the numerical solution to the result obtained with increasing 

numbers of boundary elements. The segments BA , AO, OA’ and A’C of the contour L were decomposed 
into equal numbers m of elements. The elements within the limits of each segment all had the same 
length. The collocation points were chosen to be the centres of the elements. The results of the calcu- 

lations were 

m 1 2 3 6 12 24 

4 0.720 1.116 1.131 I,12289 I.12203 1.12158 

We will now consider the same problem for different angles a. The principle behind decomposing the 

contour L into boundary elements was the same. Below we give results of the calculation for m = 12 (Fl). 
For comparison we also give the results of Hasebe and Inohara (F2) which are taken from [lo] 

a O0 15” 30” 45” 60” 75” 

Fl1 1.122 1,068 0.916 0.698 0.453 0.221 
n, 1.121 1.069 0.920 0.705 0.461 0.239 
Flu 0 0.178 0.313 0.373 0.343 0.228 
mu 0 0.174 0.306 0.364 0.338 0.219 

We will now consider examples of applications of the method to finite domains. Figure 3 shows a strip 
with a linear oblique crack of length a, stretched by a uniformly distributed load cr. The contour r consists 
of eight linear segments (the unloaded side of the strip, where there is no crack, being considered, for 

convenience, to be two segments). Each of these is uniformly decomposed into m boundary elements. 

The collocation points were chosen to be the centres of the elements. We will consider first of all the case 

a = 0. Here, by symmetry, F,, = 0. Let Wl H = 2. The results of an analysis of the convergence of values of 

F, to the value found for different values of m are shown together with the results of Bowie [ll] and Zang 

[3] in Table 1. 

Table 1 

a m [ill [31 
ii 1 2 6 12 

0.1 1.517 1.325 1.243 1.233 1.23 1.228 
0.3 1.749 1.831 1,855 1.854 1.85 1.843 

0.5 2.228 2.710 2.989 3.022 3.01 0.7 2.892 4.140 5.948 6.334 6.48 ::g 
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The results of calculations of 4 for the same problem with W/H = 1, when m = 6 and m = 12, together 
with results from [12,13], obtained for an infinite strip, are given below 

dcv 0.1 0.3 05 0.7 
Fr(m = 6) 1.201 1.651 2.750 3.646 
FI(m = 12) 1.192 1.658 2811 6,194 
Ft I12J 1.655 2.827 6.376 
RI u31 1,189 1.660 2,825 6.36 

The results of calculations of F;(a) and F,,(u) when W/H = 1 and a/W = 0.3 (taking m = 6) are almost 
identical with the results in [ll]. 

Note that the test problem solutions obtained show that the accuracy of the method is acceptable. 
In conclusion we consider the problem of a curvilinear crack in a stretched strip (Fii. 4). Suppose that 

the line of the crack is part of a circle of radius R . The length of the crack is a = Ra. The de~omp~ition of 
the contour L into elements is the same as in the preceding problem with a linear crack in a strip. Below 
we give the results of calculations for R/W = 0.3 (m = 6). 

a IS” 30* 45* 600 750 90” 
Fr 1,146 1,116 1.044 0.905 0.708 4.481 
Fll 0.171 0337 0.484 0.584 0.615 0370 

Fig. 3. Fig. 4. 
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